Question:
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Solution:
Given:
$a_{9}=0$
$\Rightarrow a+(9-1) d=0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+8 d=0$
$\Rightarrow a=-8 d \ldots(\mathrm{i})$
To prove.
$a_{29}=2 a_{19}$
Proof:
LHS : $a_{29}=a+(29-1) d$
$=a+28 d$
$=-8 d+28 d \quad($ From $(\mathrm{i}))$
$=20 d$
RHS : $2 a_{19}=2[a+(19-1) d]$
$=2(a+18 d)$
$=2 a+36 d$
$=2(-8 d)+36 d \quad($ From $(\mathrm{i}))$
$=-16 d+36 d$
$=20 d$
LHS = RHS
Hence, proved.