if a+

Question:

If $a+\alpha=1, b+\beta=2$ and $a f(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0$, then the value of the expression $\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}$ is

Solution:

$\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}$..............

$x \rightarrow \frac{1}{x}$

af $\left(\frac{1}{x}\right)+\operatorname{af}(x)=\frac{b}{x}+\beta x$

...........

$(i)+(i i)$

$(a+\alpha)\left[f(x)+f\left(\frac{1}{x}\right)\right]=\left(x+\frac{1}{x}\right)(b+\beta)$

$\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}=\frac{2}{1}=2$

Leave a comment