If a, b, c are in G.P., prove that log a, log b,


If abc are in G.P., prove that log a, log b, log c are in A.P.


a ,b and c are in G.P.

$\therefore b^{2}=a c$

Now, taking $\log$ on both the sides:

$\Rightarrow \log (b)^{2}=\log a c$

$\Rightarrow 2 \log b=\log a+\log c$

Thus, $\log a, \log b$ and $\log c$ are in A.P.



Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now