If a, b, c are in GP, prove that
(i) $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
(ii) $\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}=\frac{1}{\left(b^{2}-c^{2}\right)}$
(iii) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
(iv) $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$
(i) $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
To prove: $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Given: $a, b, c$ are in GP
Formula used: When $a, b, c$ are in GP, $b^{2}=a c$
When $a, b, c$ are in GP, $b^{2}=a c$
Taking LHS $=a\left(b^{2}+c^{2}\right)$
$=a\left(a c+c^{2}\right)\left[b^{2}=a c\right]$
$=\left(a^{2} c+a c^{2}\right)$
$=c\left(a^{2}+a c\right)$
$=c\left(a^{2}+b^{2}\right)\left[b^{2}=a c\right]$
$=\operatorname{RHS}$
Hence Proved
(ii) $\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}=\frac{1}{\left(b^{2}-c^{2}\right)}$
To prove: $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Given: $a, b, c$ are in GP
Formula used: When $a, b, c$ are in $G P, b^{2}=a c$
Proof: When $a, b, c$ are in GP, $b^{2}=a c$
Taking $L H S=\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}$
$\Rightarrow \frac{b^{2}+a^{2}-b^{2}}{\left(a^{2}-b^{2}\right)\left(b^{2}\right)}$
$\Rightarrow \frac{a^{2}}{\left(a^{2}-b^{2}\right)(a c)}$
$\Rightarrow \frac{a^{2}}{\left(a^{3} c-a^{2} c^{2}\right)}$
$\Rightarrow \frac{a^{2}}{a^{2}\left(a c-c^{2}\right)}$
$\Rightarrow \frac{1}{\left(b^{2}-c^{2}\right)}\left[b^{2}=a c\right]$
Hence Proved
(iii) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
To prove: $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
Given: $a, b, c$ are in GP
Formula used: When $a, b, c$ are in GP, $b^{2}=a c$
Proof: When $a, b, c$ are in GP, $b^{2}=a c$
Taking LHS = (a + 2b + 2c)(a – 2b + 2c)
$\Rightarrow[(a+2 c)+2 b][(a+2 c)-2 b]$
$\Rightarrow\left[(a+2 c)^{2}-(2 b)^{2}\right]\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}\right)-4 b^{2}\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}\right)-4 b^{2}\right]\left[b^{2}=a c\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}-4 a c\right]\right.$
$\Rightarrow a^{2}+4 c^{2}=R H S$
Hence Proved
(iv) $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$
To prove: $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$
Given: $a, b, c$ are in GP
Formula used: When $a, b, c$ are in GP, $b^{2}=a c$
Proof: When $a, b, c$ are in GP, $b^{2}=a c$
Taking LHS = $a^{2} b^{2} c^{2}\left(\frac{b^{3} c^{3}+a^{3} c^{3}+a^{3} b^{3}}{a^{3} b^{3} c^{3}}\right)$
$\Rightarrow\left(\frac{b^{3} c^{3}+a^{3} c^{3}+a^{3} b^{3}}{a b c}\right)$
$\Rightarrow\left(\frac{b^{2} b c^{3}+(a c)^{2} a c+a^{3} b^{2} b}{a b c}\right)$
$\Rightarrow\left(\frac{a c b c^{3}+\left(b^{2}\right)^{2} a c+a^{3} a c b}{a b c}\right)\left[b^{2}=a c\right]$
$\Rightarrow\left(\frac{a c b c^{3}+b^{3} a b c+a^{3} a c b}{a b c}\right)$
$\Rightarrow\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}\right)=\mathrm{RHS}$
Hence Proved
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,