Question:
If AM and GM of two positive numbers a and b are 10 and 8 respectively, find the numbers.
Solution:
$\mathrm{AM}=10$
$\therefore \frac{a+b}{2}=10$
$\Rightarrow a+b=20 \quad \ldots \ldots(\mathrm{i})$
Also, $G=8$
$\therefore \sqrt{a b}=8$
$\Rightarrow a b=8^{2}$
$\Rightarrow a b=64$ ....(ii)
Using (i) and (ii):
$\Rightarrow a(20-a)=64$
$\Rightarrow a^{2}-20 a+64=0$
$\Rightarrow a^{2}-16 a-4 a+64=0$
$\Rightarrow a(a-16)-4(a-16)=0$
$\Rightarrow(a-16)(a-4)=0$
$\Rightarrow a=4,16$
If $a=4$, then $b=16$.
And, if $a=16$, then $b=4$.