If ax2 + bx + c = 0 has equal roots, then c =


If $a x^{2}+b x+c=0$ has equal roots, then $c=$

(a) $\frac{-b}{2 a}$

(b) $\frac{b}{2 a}$

(c) $\frac{-b^{2}}{4 a}$

(d) $\frac{b^{2}}{4 a}$


The given quadric equation is $a x^{2}+b x+c=0$, and roots are equal

Then find the value of c.

Let $\alpha$ and $\beta$ be two roots of given equation $\alpha=\beta$

Then, as we know that sum of the roots



$2 \alpha=\frac{-b}{a}$

$a=\frac{-b}{2 a}$

And the product of the roots

$\alpha \cdot \beta=\frac{c}{a}$

$\alpha \alpha=\frac{c}{a}$

Putting the value of $\alpha$

$\frac{-b}{2 a} \times \frac{-b}{2 a}=\frac{c}{a}$

$\frac{b^{2}}{4 a}=c$

Therefore, the value of $c=\frac{b^{2}}{4 a}$

Thus, the correct answer is (d)



Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now