If α, β, γ be the zeros of the polynomial p(x) such that

Question:

If $\alpha, \beta, y$ be the zeros of the polynomial $p(x)$ such that $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta y+y \alpha)=-$ 10 and $\alpha \beta y=-24$, then $p(x)=$ ?

(a) $x^{3}+3 x^{2}-10 x+24$

(b) $x^{3}+3 x^{2}+10 x-24$

(c) $x^{3}-3 x^{2}-10 x+24$

(d) None of these

 

Solution:

(c) $x^{3}-3 x^{2}-10 x+24$

Given: $\alpha, \beta$ and $\gamma$ are the zeroes of polynomial $p(x)$.

Also, $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)=-10$ and $\alpha \beta \gamma=-24$

$\therefore p(x)=x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma$

$=x^{3}-3 x^{2}-10 x+24$

 

Leave a comment