If e1 and e2 are the eccentricities of the ellipse


If $e_{1}$ and $e_{2}$ are the eccentricities of the ellipse, $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$

and the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ respectively and $\left(e_{1}, e_{2}\right)$ is

a point on the ellipse, $15 x^{2}+3 y^{2}=k$, then $k$ is equal to

  1. (1) 16

  2. (2) 17

  3. (3) 15

  4. (4) 14

Correct Option: 1


Eccentricity of ellipse


Eccentricity of hyperbola


Since, the point $\left(e_{1}, e_{2}\right)$ is on the ellipse

$15 x^{2}+3 y^{2}=k$

Then, $15 e_{1}^{2}+3 e_{2}^{2}=k$

$\Rightarrow \quad k=15\left(\frac{7}{9}\right)+3\left(\frac{13}{9}\right)$

$\Rightarrow \quad k=16$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now