If $f: R \rightarrow(-1,1)$ is defined by $f(x)=\frac{-x|x|}{1+x^{2}}$, then $f^{-1}(x)$ equals
(a) $\sqrt{\frac{|x|}{1-|x|}}$
(b) $\operatorname{Sgn}(x) \sqrt{\frac{|x|}{1-|x|}}$
(c) $-\sqrt{\frac{x}{1-x}}$
(d) None of these
(b) $-\operatorname{Sgn}$ $(x) \sqrt{\frac{|x|}{1-|x|}}$
We have, $f(x)=\frac{-x|x|}{1+x^{2}} \quad x \in(-1,1)$
Case - (I)
When, $x<0$,
Then, $|x|=-x$
And $f(x)>0$
Now,
$f(x)=\frac{-x(-x)}{1+x^{2}}$
$\Rightarrow y=\frac{x^{2}}{1+x^{2}}$
$\Rightarrow \frac{y}{1}=\frac{x^{2}}{1+x^{2}}$
$\Rightarrow \frac{y+1}{y-1}=\frac{x^{2}+1+x^{2}}{x^{2}-1-x^{2}} \quad[$ Using Componendo and dividendo]
$\Rightarrow \frac{y+1}{y-1}=\frac{2 x^{2}+1}{-1}$
$\Rightarrow-\frac{y+1}{y-1}=2 x^{2}+1$
$\Rightarrow \frac{2 y}{1-y}=2 x^{2}$
$\Rightarrow \frac{y}{1-y}=x^{2}$
$\Rightarrow x=-\sqrt{\frac{y}{1-y}}$ (As $x<0$ )
$\Rightarrow x=-\sqrt{\frac{|y|}{1-|y|}}$
$[$ As $y>0]$
To find the inverse interchanging $x$ and $y$ we get,
$f^{-1}(x)=-\sqrt{\frac{|x|}{1-|x|}}$
Case - (II)
When, $x>0$,
Then, $|x|=x$
And $f(x)<0$
Now,
$f(x)=\frac{-x(x)}{1+x^{2}}$
$\Rightarrow y=\frac{-x^{2}}{1+x^{2}}$
$\Rightarrow \frac{y}{1}=\frac{-x^{2}}{1+x^{2}}$
$\Rightarrow \frac{y+1}{y-1}=\frac{-x^{2}+1+x^{2}}{-x^{2}-1-x^{2}} \quad$ [Using Componendo and dividendo]
$\Rightarrow \frac{y+1}{y-1}=\frac{1}{-2 x^{2}-1}$
$\Rightarrow \frac{1+y}{1-y}=\frac{1}{2 x^{2}+1}$
$\Rightarrow \frac{1-y}{1+y}=2 x^{2}+1$
$\Rightarrow \frac{-2 y}{1+y}=2 x^{2}$
$\Rightarrow x^{2}=\frac{-y}{1+y}$
$\Rightarrow x=\sqrt{\frac{-y}{1+y}}$ $(\operatorname{As} x>0)$
$\Rightarrow x=\sqrt{\frac{|y|}{1-|y|}}$
$[$ As $y<0]$
To find the inverse interchanging $x$ and $y$ we get,
$f^{-1}(x)=\sqrt{\frac{|x|}{1-|x|}}$ ... (ii)
Case - (III)
When, $x=0$,
Then, $f(x)=0$
Hence, $f^{-1}(x)=0 \quad \ldots$ (iii)
Combinig equation (i), (ii) and (iii) we get,
$f^{-1}(x)=-\operatorname{Sgn}(x) \sqrt{\frac{|x|}{1-|x|}}$