If Q (0,1) is equidistant from P (5, −3) and R (x, 6), find the values of x. Also, find the distances QR and PR.
The distance $d$ between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula
$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
The three given points are Q(0,1), P(5,−3) and R(x,6).
Now let us find the distance between ‘P’ and ‘Q’.
$P Q=\sqrt{(5-0)^{2}+(-3-1)^{2}}$
$=\sqrt{(5)^{2}+(-4)^{2}}$
$=\sqrt{25+16}$
$P Q=\sqrt{41}$
Now, let us find the distance between ‘Q’ and ‘R’.
$Q R=\sqrt{(0-x)^{2}+(1-6)^{2}}$
$Q R=\sqrt{(-x)^{2}+(-5)^{2}}$
It is given that both these distances are equal. So, let us equate both the above equations,
$P Q=Q R$
$\sqrt{41}=\sqrt{(-x)^{2}+(-5)^{2}}$
Squaring on both sides of the equation we get,
$41=(-x)^{2}+(-5)^{2}$
$41=x^{2}+25$
$x^{2}=16$
$x=\pm 4$
Hence the values of ' $x$ ' are 4 or $-4$.
Now, the required individual distances,
$Q R=\sqrt{(0 \mp 4)^{2}+(1-6)^{2}}$
$=\sqrt{(\mp 4)^{2}+(-5)^{2}}$
$Q R=\sqrt{41}$
Hence the length of ' $Q R$ ' is $\sqrt{41}$ units.
For ‘PR’ there are two cases. First when the value of ‘x’ is 4
$P R=\sqrt{(5-4)^{2}+(-3-6)^{2}}$
$=\sqrt{(1)^{2}+(-9)^{2}}$
$=\sqrt{1+81}$
$P R=\sqrt{82}$
Then when the value of ‘x’ is −4,
$P R=\sqrt{(5+4)^{2}+(-3-6)^{2}}$
$=\sqrt{(9)^{2}+(-9)^{2}}$
$=\sqrt{81+81}$
$P R=9 \sqrt{2}$
Hence the length of ' $P R$ can be $\sqrt{82}$ or $9 \sqrt{2}$ units