If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If $S=\left[S_{i j}\right]$ is a scalar matrix such that $s_{i j}=k$ and $A$ is a square matrix of the same order, then $A S=S A=?$
(a) $A^{k}$
(b) $k+A$
(c) $k A$
(d) $k S$
(c) $k A$
Here,
$S=\left[S_{i j}\right]$
$\Rightarrow S=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right] \quad\left[\because S_{i j}=k\right]$
Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \quad[\because A$ is square matrix $]$'
Now,
$A S=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]=\left[\begin{array}{ll}k a_{11} & k a_{12} \\ k a_{21} & k a_{22}\end{array}\right]=k\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=k A$
$S A=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}k a_{11} & k a_{12} \\ k a_{21} & k a_{22}\end{array}\right]=k\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=k A$
$\therefore A S=S A=k A$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.