If show that
(A + B) (A – B) ≠ A2 – B2
Given, $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
So, $(A+B)=\left[\begin{array}{cc}0+0 & 1-1 \\ 1+1 & 1+0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]$
And, $(A-B)=\left[\begin{array}{ll}0-0 & 1+1 \\ 1-1 & 1-0\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]$
$(A+B) \cdot(A-B)=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0+0 & 0+0 \\ 0+0 & 4+1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]$ $\ldots$ (i)
Also, $\quad A^{2}=A \cdot A$
$=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0+1 & 0+1 \\ 0+1 & 1+1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
And, $B^{2}=B \cdot B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}0-1 & 0+0 \\ 0+0 & -1+0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Therefore, $A^{2}-B^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]-\left[\begin{array}{cc}-1 & 0 \\ -0 & -1\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$ $\ldots$ (ii)
Given, $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
So, $(A+B)=\left[\begin{array}{ll}0+0 & 1-1 \\ 1+1 & 1+0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]$
And, $(A-B)=\left[\begin{array}{ll}0-0 & 1+1 \\ 1-1 & 1-0\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]$
$(A+B) \cdot(A-B)=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0+0 & 0+0 \\ 0+0 & 4+1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]$ $\ldots$ (i)
Also, $\quad A^{2}=A \cdot A$
$=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0+1 & 0+1 \\ 0+1 & 1+1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
And, $B^{2}=B \cdot B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}0-1 & 0+0 \\ 0+0 & -1+0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Therefore, $A^{2}-B^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]-\left[\begin{array}{cc}-1 & 0 \\ -0 & -1\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$ ........(ii)
Hence, from (i) and (ii),
(A + B) (A – B) ≠ A2 – B2
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,