If $\tan ^{-1} x=\frac{x}{10}$ for some $x \in \mathrm{R}$, then the value of $\cot ^{-1} x$ is
(a) $\frac{\pi}{5}$
(b) $\frac{2 \pi}{5}$
(c) $\frac{3 \pi}{5}$
(d) $\frac{4 \pi}{5}$
Disclaimer: The solution has been provided for the following question.
If $\tan ^{-1} x=\frac{\pi}{10}$ for some $x \in \mathrm{R}$, then the value of $\cot ^{-1} x$ is
(a) $\frac{\pi}{5}$
(b) $\frac{2 \pi}{5}$
(c) $\frac{3 \pi}{5}$
(d) $\frac{4 \pi}{5}$
Solution:
We know
$\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, \forall x \in R$
$\Rightarrow \frac{\pi}{10}+\cot ^{-1} x=\frac{\pi}{2}$ $\left(\tan ^{-1} x=\frac{\pi}{10}\right)$
$\Rightarrow \cot ^{-1} x=\frac{\pi}{2}-\frac{\pi}{10}$
$\Rightarrow \cot ^{-1} x=\frac{4 \pi}{10}=\frac{2 \pi}{5}$
Hence, the correct answer is option (b).