If the areas of circular bases of a frustum

Question:

If the areas of circular bases of a frustum of a cone are 4 cm2 and 9 cm2 respectively and the height of the frustum is 12 cm. What is the volume of the frustum?

Solution:

Area of circular bases of frustum is

$A_{1}=4 \mathrm{~cm}^{2}$

 

$A_{2}=9 \mathrm{~cm}^{2}$

The height of frustum h = 12 cm

Now, the volume of frustum

$V=\frac{h}{3}\left\{A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right\}$

$=\frac{12}{3}\{4+9+\sqrt{4 \times 9}\}$

$=4\{13+6\}$

$V=76 \mathrm{~cm}^{3}$

Leave a comment