If the coordinates of the mid-points of the sides of a triangle are (1, 1) (2, −3) and (3, 4), find the vertices of the triangle.
The co-ordinates of the midpoint $\left(x_{m}, y_{m}\right)$ between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by,
$\left(x_{m}, y_{m}\right)=\left(\left(\frac{x_{1}+x_{2}}{2}\right),\left(\frac{y_{1}+y_{2}}{2}\right)\right)$
Let the three vertices of the triangle be $A\left(x_{A}, y_{A}\right), B\left(x_{B}, y_{B}\right)$ and $C\left(x_{C}, y_{C}\right)$.
The three midpoints are given. Let these points be $M_{A B}(1,1), M_{B C}(2,-3)$ and $M_{C a}(3,4)$.
Let us now equate these points using the earlier mentioned formula,
$(1,1)=\left(\left(\frac{x_{A}+x_{H}}{2}\right),\left(\frac{y_{A}+y_{H}}{2}\right)\right)$
Equating the individual components we get,
$x_{A}+x_{B}=2$
$y_{A}+y_{B}=2$
Using the midpoint of another side we have,
$(2,-3)=\left(\left(\frac{x_{R}+x_{C}}{2}\right),\left(\frac{y_{B}+y_{C}}{2}\right)\right)$
Equating the individual components we get,
$x_{B}+x_{C}=4$
$y_{B}+y_{C}=-6$
Using the midpoint of the last side we have,
$(3,4)=\left(\left(\frac{x_{A}+x_{C}}{2}\right),\left(\frac{y_{A}+y_{C}}{2}\right)\right)$
Equating the individual components we get,
$x_{A}+x_{C}=6$
$y_{A}+y_{C}=8$
Adding up all the three equations which have variable ‘x’ alone we have,
$x_{t}+x_{\theta}+x_{\theta}+x_{C}+x_{t}+x_{C}=2+4+6$
$2\left(x_{1}+x_{3}+x_{C}\right)=12$
$x_{A}+x_{B}+x_{C}=6$
Substituting $x_{B}+x_{C}=4$ in the above equation we have,
$x_{A}+x_{B}+x_{C}=6$
$x_{4}+4=6$
$x_{A}=2$
Therefore,
$x_{1}+x_{c}=6$
$x_{c}=6-2$
$x_{C}=4$
And
$x_{A}+x_{B}=2$
$x_{p}=2-2$
$x_{R}=0$
Adding up all the three equations which have variable ‘y’ alone we have,
$y_{4}+y_{8}+y_{8}+y_{C}+y_{4}+y_{C}=2-6+8$
$2\left(y_{A}+y_{B}+y_{C}\right)=4$
$y_{A}+y_{B}+y_{C}=2$
Substituting $y_{s}+y_{C}=-6$ in the above equation we have,
$y_{A}+y_{B}+y_{C}=2$
$y_{A}-6=2$
$y_{A}=8$
Therefore,
y_{A}+y_{c}=8
y_{c}=8-8
$y_{C}=0$
And
$y_{A}+y_{B}=2$
$y_{B}=2-8$
$y_{B}=-6$
Therefore the co-ordinates of the three vertices of the triangle are $A(2,8)$
$B(0,-6)$
$C(4,0)$ .