If the difference between the circumference and radius of a circle is $37 \mathrm{~cm}$, then using $\pi=\frac{22}{7}$, the circumference (in $\mathrm{cm}$ ) of the circle is
(a) 154
(b) 44
(c) 14
(d) 7
We know that circumference; $\mathrm{C}$ of the circle with radius $r$ is equal to $2 \pi r$.
We have given difference between circumference and radius of the circle that is $37 \mathrm{~cm}$.
$\therefore C-r=2 \pi r-r$
$\therefore(2 \pi-1) r=37$
Substituting $\pi=\frac{22}{7}$ we get,
$\therefore\left(2 \times \frac{22}{7}-1\right) r=37$
$\therefore\left(\frac{44-7}{7}\right) r=37$
$\therefore\left(\frac{37}{7}\right) r=37$
Dividing both sides of the equation by $\frac{7}{37}$, we get, $\therefore r=7$
Therefore, circumference of the circle will beĀ
$2 \pi \mathrm{r}=2 \times \frac{22}{7} \times 7$
$=44 \mathrm{~cm}^{2}$
Hence, the correct choice is (b).