Question:
If the difference between the roots of the equation $x^{2}+a x+8=0$ is 2 , write the values of $a$.
Solution:
Given: $x^{2}+a x+8=0$
Let $\alpha$ and $\beta$ are the roots of the equation.
Sum of the roots $=\alpha+\beta=\frac{-a}{1}=-a$.
Product of the roots $=\alpha \beta=\frac{8}{1}=8$
Given: $\alpha-\beta=2$
Then, $(\alpha+\beta)^{2}-(\alpha-\beta)^{2}=4 \alpha \beta$
$\Rightarrow(\alpha+\beta)^{2}-2^{2}=4 \times 8$
$\Rightarrow(\alpha+\beta)^{2}-4=32$
$\Rightarrow(\alpha+\beta)^{2}=32+4=36$
$\Rightarrow(\alpha+\beta)=\pm 6$
$\alpha+\beta=-a=\pm 6$
$\therefore a=\pm 6$