If the equation cos4 O + sin4 O + lambda = 0 has real solutions for O.

Question:

If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta$, then $\lambda$ lies in the interval :

  1. $\left[-\frac{3}{2},-\frac{5}{4}\right]$

  2. $\left(-\frac{1}{2},-\frac{1}{4}\right]$

  3. $\left(-\frac{5}{4},-1\right)$

  4. $\left[-1,-\frac{1}{2}\right]$


Correct Option: , 4

Solution:

$\lambda=-\left(\sin ^{4} \theta+\cos ^{4} \theta\right)$

$\lambda=-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta$

$\lambda=\frac{\sin ^{2} 2 \theta}{2}-1$

$\frac{\sin ^{2} 2 \theta}{2} \in\left[0, \frac{1}{2}\right]$

$\lambda \in\left[-1,-\frac{1}{2}\right]$

Leave a comment