Question:
If the point A(x, 2) is equidistant from the points B(8, − 2) and C(2, − 2), find the value of x. Also, find the length of AB.
Solution:
As per the question
$A B=A C$
$\Rightarrow \sqrt{(x-8)^{2}+(2+2)^{2}}=\sqrt{(x-2)^{2}+(2+2)^{2}}$
Squaring both sides, we get
$(x-8)^{2}+4^{2}=(x-2)^{2}+4^{2}$
$\Rightarrow x^{2}-16 x+64+16=x^{2}+4-4 x+16$
$\Rightarrow 16 x-4 x=64-4$
$\Rightarrow x=\frac{60}{12}=5$
Now,
$A B=\sqrt{(x-8)^{2}+(2+2)^{2}}$
$=\sqrt{(5-8)^{2}+(2+2)^{2}} \quad(\because x=2)$
$=\sqrt{(-3)^{2}+(4)^{2}}$
$=\sqrt{9+16}=\sqrt{25}=5$
Hence, x = 5 and AB = 5 units.