If the surface area of a cube is increasing at a rate

Question:

If the surface area of a cube is increasing at a rate of $3.6 \mathrm{~cm}^{2} / \mathrm{sec}$, retaining its shape; then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$ ), when the length of a side of the cube is $10 \mathrm{~cm}$, is:

  1. 9

  2. 18

  3. 10

  4. 20


Correct Option: 1

Solution:

$\frac{\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{a}^{2}\right)=3.6 \Rightarrow 12 \mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}=3.6$

$\mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}=0.3$

$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{a}^{3}\right)=3 \mathrm{a}\left(\mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}\right)$

$=3 \times 10 \times 0.3=9$

Leave a comment