If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero,

Question:

If two of the zeros of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ are each equal to zero, then the third zero is

(a) $\frac{-d}{a}$

(b) $\frac{c}{a}$

(c) $\frac{-b}{a}$

(d) $\frac{b}{a}$

Solution:

Let $\alpha=0, \beta=0$ and $\gamma$ be the zeros of the polynomial

$f(x)=a x^{3}+b x^{2}+c x+d$

Therefore

$\alpha+\beta+\gamma=\frac{-\text { Coefficient of } x^{2}}{\text { Coefficient of } x^{3}}$

$=-\left(\frac{b}{a}\right)$

$\alpha+\beta+\gamma=-\frac{b}{a}$

$0+0+\gamma=-\frac{b}{a}$

$\gamma=-\frac{b}{a}$

The value of $\gamma=-\frac{b}{a}$

Hence, the correct choice is $(c)$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now