If x3 + x2 − ax + b is divisible by


If $x^{3}+x^{2}-a x+b$ is divisible by $\left(x^{2}-x\right)$, write the values of $a$ and $b$.



Equating $x^{2}-x$ to 0 to find the zeros, we will get


$\Rightarrow x=0$ or $x-1=0$

$\Rightarrow x=0$ or $x=1$

Since, $x^{3}+x^{2}-a x+b$ is divisible by $x^{2}-x$

Hence, the zeros of $x^{2}-x$ will satisfy $x^{3}+x^{2}-a x+b$


$\Rightarrow b=0$


$(1)^{3}+1^{2}-a(1)+0=0 \quad[\because b=0]$

$\Rightarrow a=2$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now