If y=y(x) is the solution of the differential

Question:

If $y=y(x)$ is the solution of the differential equation $\frac{5+\mathrm{e}^{\mathrm{x}}}{2+\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{e}^{\mathrm{x}}=0$ satisfying

$y(0)=1$, then a value of $y\left(\log _{e} 13\right)$ is :

 

  1.  1

  2. $-1$

  3.  2

  4. 0


Correct Option: , 2

Solution:

$\frac{\left(5+\mathrm{e}^{\mathrm{x}}\right)}{2+\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{e}^{\mathrm{x}}$

$\int \frac{d y}{2+y}=\int \frac{-e^{x}}{e^{x}+5} d x$

$\ln (y+2)=-\ln \left(e^{x}+5\right)+k$

$(y+2)\left(e^{x}+5\right)=C$

$\because y(0)=1$

$\Rightarrow \mathrm{C}=18$

$y+2=\frac{18}{e^{x}+5}$

at $x=\ln 13$

$y+2=\frac{18}{13+5}=1$

$y=-1$

Leave a comment