In the adjoining figure, ABCD is a parallelogram in which ∠DAB = 80° and ∠DBC = 60°.

Question:

In the adjoining figure, ABCD is a parallelogram in which DAB = 80° and ∠DBC = 60°. Calculate ∠CDB and ∠ADB.

 

Solution:

Given:  ABCD is parallelogram and ∠DAB = 80°​ and ∠DBC = 60°
To find: Measure of ∠CDB and ∠ADB

In parallelogram ABCD, AD ||​ BC
∴ ∠DBC = ∠ ADB = 60o     (Alternate interior angles)     ...(i)

As ∠DAB and ∠ADC are adajcent angles, ∠DAB ​+ ∠ADC​ = 180o
∴ ∠ADC = 180o  − ∠DAB
​    ⇒∠ADC​ = 180o − 80o = 100o

Also, ∠ADC​ = ∠ADB + ∠C​​DB
∴​ ∠ADC​ =​ 100o 
⇒ ∠ADB + ∠C​​DB = 100o              ...(ii)
From (i) and (ii), we get:
60o + ∠C​​DB = 100o 
⇒ ∠C​​DB = 100o − 60o = 40o
Hence, ∠CDB​ =​ 40o and ∠ADB​ = 60o

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now