In the given figure, AB || CD and BC || ED. Find the value of x.


In the given figure, AB || CD and BC || ED. Find the value of x.


$B C \| E D$ and $\mathrm{CD}$ is the transversal.


$\angle B C D+\angle C D E=180^{\circ} \quad$ [Angles on the same side of a transversal line are supplementary]

$\Rightarrow \angle B C D+75=180$


$\Rightarrow \angle B C D=105^{\circ}$

$A B \| C D$ and $\mathrm{BC}$ is the transversal.

$\angle A B C=\angle B C D$ (alternate angles)

$\Rightarrow x^{\circ}=105^{\circ}$

$\Rightarrow x=105$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now