In the given figure, AB || CD. Find the value of x.


In the given figure, AB || CD. Find the value of x.



$A B \| C D$ and $A C$ is the transversal.


$\angle B A C+\angle A C D=180^{\circ} \quad[$ Consecutive Interior Angles $]$

$\Rightarrow 75+\angle A C D=180$

$\Rightarrow \angle A C D=105^{\circ}$


$\angle A C D=\angle E C F \quad[$ Vertically-Opposite Angles $]$

$\Rightarrow \angle E C F=105^{\circ}$

We know that the sum of the angles of a triangle is 180°">180°180°.

$\angle E C F+\angle C F E+\angle C E F=180^{\circ}$

$\Rightarrow 105^{\circ}+30^{\circ}+x=180^{\circ}$

$\Rightarrow 135^{\circ}+x=180^{\circ}$

$\Rightarrow x=45^{\circ}$



Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now