In the given figure, ABCD is a || gm in which diagonals AC and BD intersect at O.

In the given figure, ABCD is a || gm in which diagonals AC and BD intersect at O. If ar(||gm ABCD) is 52 cm2, then the ar(OAB) = ?

(a) $26 \mathrm{~cm}^{2}$

(b) $18.5 \mathrm{~cm}^{2}$

(c) $39 \mathrm{~cm}^{2}$


(d) $13 \mathrm{~cm}^{2}$



(d) $13 \mathrm{~cm}^{2}$

The diagonals of a parallelogram divides it into four triangles of equal areas.

$\therefore$ Area of $\Delta O A B=\frac{1}{4} \times \operatorname{ar}(\| \mathrm{gm} A B C D)$

$\Rightarrow \operatorname{ar}(\Delta O A B)=\frac{1}{4} \times 52=13 \mathrm{~cm}^{2}$



Leave a comment

Please enter comment.
Please enter your name.