In the given figure, ABCD is a quadrilateral in which AB = AD and BC = DC.


In the given figure, ABCD is a quadrilateral in which AB = AD and BC = DC. Prove that
(i) AC bisects A and ∠C,
(ii) BE = DE,
(iii) ∠ABC = ∠ADC.



Given:  ABCD is a quadrilateral in which AB = AD and BC = DC  
In ∆ABC and ∆ADCwe have:
AB = AD                                                  (Given)

BC = DC                                                 (Given)
AC is common.
i.e., ∆ABC ≅ ∆ADC                                    (SSS congruence rule)

∴ ∠BAC = ∠DAC and ∠BCA = ∠D​CA        (By CPCT)
Thus, AC bisects ∠A and ∠ C.

Now, in 
∆ABE and ∆ADEwe have:
  AB = AD                                      (Given)​
∠BAE = ∠DAE​                               (Proven above)
 AE is common.
∴ ∆ABE ≅  ∆ADE                          (SAS congruence rule)
⇒ BE = DE                                                 (By CPCT)
 ∆ABC ≅  ∆ADC                  (Proven above)
∴ ∠ABC = ∠AD​C                           (By CPCT)​


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now