In the given figure, DB ⊥ BC, DE ⊥ AB and AC ⊥ BC.


In the given figure, DB ⊥ BCDE ⊥ AB and AC ⊥ BC.

Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.



In $\triangle B E D$ and $\triangle A C B$, we have:

$\angle B E D=\angle A C B=90^{\circ}$

$\because \angle B+\angle C=180^{\circ}$

$\therefore B D \| A C$

$\angle E B D=\angle C A B$ (Alternate angles)

Therefore, by AA similarity theorem, we get:

$\triangle B E D \sim \triangle A C B$

$\Rightarrow \frac{B E}{A C}=\frac{D E}{B C}$

$\Rightarrow \frac{B E}{D E}=\frac{A C}{B C}$

This completes the proof.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now