Question:
In the given figure, O is the point inside a △MNP such that ∠MOP = 900 , OM = 16 cm and OP = 12 cm. If MN = 21 cm and ∠NMP = 900 then
NP = ?
(a) 25 cm
(b) 29 cm
(c) 33 cm
(d) 35 cm
Solution:
Now, In right triangle MOP
By using Pythagoras theorem, we have
$\mathrm{MP}^{2}=\mathrm{PO}^{2}+\mathrm{OM}^{2}$
$=12^{2}+16^{2}$
$=144+256$
$=400$
$\therefore \mathrm{MP}^{2}=400$
$\Rightarrow \mathrm{MP}=20 \mathrm{~cm}$
Now, In right triangle MPN
By using Pythagoras theorem, we have
$\mathrm{PN}^{2}=\mathrm{NM}^{2}+\mathrm{MP}^{2}$
$=21^{2}+20^{2}$
$=441+400$
$=841$
$\therefore \mathrm{MP}^{2}=841$
$\Rightarrow \mathrm{MP}=29 \mathrm{~cm}$
Hence, the correct answer is option (b).