Question:
In the given figure, prove that
(i) CD + DA + AB > BC
(ii) CD + DA + AB + BC > 2AC.
Solution:
Given: Quadrilateral ABCD
To prove:
(i) CD + DA + AB > BC
(ii) CD + DA + AB + BC > 2AC
Proof:
(i)
In $\Delta A C D$,
$C D+D A>C A \quad \ldots(1)$
In $\Delta A B C$,
$A B+C A>B C \quad \ldots(2)$
Adding $(1)$ and $(2)$, we get
$C D+D A+A B+C A>C A+B C$
$\therefore A B+C D+D A>B C$
(ii)
In $\Delta C D A$
$C D+D A>C A \quad \ldots(3)$
In $\Delta B C A$,
$B C+A B>C A \quad \ldots(4)$
Adding $(3)$ and $(4)$, we get
$C D+A D+B C+A B>C A+C A$
$\therefore C D+A D+B C+A B>2 C A$