Let A be a 2x2 real matrix with entries from

Question:

Let $A$ be a $2 \times 2$ real matrix with entries from $\{0,1\}$ and $|A| \neq 0$. Consider the following two statements :

(P) If $A \neq I_{2}$, then $|A|=-1$

(Q) If $|A|=1$, then $\operatorname{tr}(A)=2$,

where $I_{2}$ denotes $2 \times 2$ identity matrix and $\operatorname{tr}(A)$ denotes the sum of the diagonal entries of $A$. Then :

 

  1. (1) (P) is false and (Q) is true

  2. (2) Both (P) and (Q) are false

  3. (3) (P) is true and (Q) is false

  4. (4) Both (P) and (Q) are true


Correct Option: , 4

Solution:

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in\{0,1\}$

$\Rightarrow|A|=a d-b c \neq 0$

$\Rightarrow$ either $a d=1, b c=0$ or $a d=0$ and $b c=1$

(P) If $A \neq I_{2} \Rightarrow a d \neq 1$

$\Rightarrow a d=0$ and $b c=1 \Rightarrow|A|=-1$

$\therefore \mathrm{P}$ is true.

(Q) If $|A|=1 \Rightarrow a d=1$

$\Rightarrow a d=1$ and $b c=0$

$\Rightarrow \operatorname{tr}(A)=2$

$\therefore \mathrm{Q}$ is true.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now