Let f:

Question:

Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a continuously differentiable function such that $f(2)=6$ and $f^{\prime}(2)=\frac{1}{48}$.

If $\int_{6}^{f(x)} 4 t^{3} d t=(x-2) g(x)$, then $\lim _{x \rightarrow 2} g(x)$ is equal to :

 

  1. (1) 18

  2. (2) 24

  3. (3) 12

  4. (4) 36


Correct Option: 1

Solution:

Given, $\int_{6}^{f(x)} 4 t^{3} d t=(x-2) g(x)$

Differentiating both sides,

$4(f(x))^{3} \cdot f^{\prime}(x)=g^{\prime}(x)(x-2)+g(x)$

Putting $x=2, \frac{4(6)^{3} \cdot 1}{48}=g(2) \Rightarrow \lim _{x \rightarrow 2} g(x)=18$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now