Question:
Let $\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{N}$ such that $\mathrm{f}(\mathrm{n}+1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(a) \quad \forall \mathrm{n} \in \mathrm{N}$ and $\mathrm{g}$ be any arbitrary function. Which of the following statements is NOT true?
Correct Option: , 2
Solution:
$f(n+1)=f(n)+1$
$f(2)=2 f(1)$
$f(3)=3 f(1)$
$f(4)=4 f(1)$
...
$f(n)=n f(1)$
$f(x)$ is one-one