Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$. Then, $f$ is
(a) one-one but not onto
(b) one-one and onto
(c) onto but not one-one
(d) neither one-one nor onto
Injectivity:
Let x and y be two elements in the domain (R), such that
$f(x)=f(y)$
$\Rightarrow \frac{x^{2}-8}{x^{2}+2}=\frac{y^{2}-8}{y^{2}+2}$
$\Rightarrow\left(x^{2}-8\right)\left(y^{2}+2\right)=\left(x^{2}+2\right)\left(y^{2}-8\right)$
$\Rightarrow x^{2} y^{2}+2 x^{2}-8 y^{2}-16=x^{2} y^{2}-8 x^{2}+2 y^{2}-16$
$\Rightarrow 10 x^{2}=10 y^{2}$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x=\pm y$
So, f is not one-one.
Surjectivity:
$f(-1)=\frac{(-1)^{2}-8}{(-1)^{2}+2}=\frac{1-8}{1+2}=\frac{-7}{3}$
and $f(1)=\frac{(1)^{2}-8}{(1)^{2}+2}=\frac{1-8}{1+2}=\frac{-7}{3}$
$\Rightarrow f(-1)=f(1)=\frac{-7}{3}$
$\Rightarrow f$ is not onto. The correct answer is $(d)$.