Let $\mathrm{m}$ and $\mathrm{M}$ be respectively the minimum and maximum values of
$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right| .$ Then the
ordered pair $(\mathrm{m}, \mathrm{M})$ is equal to
Correct Option:
$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$
$\left|\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & -1 \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$
$=-1\left(\sin ^{2} x\right)-1\left(1+\sin 2 x+\cos ^{2} x\right)$
$=-\sin 2 x-2$
$\mathrm{m}=-3, \mathrm{M}=-1$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.