Let S be the set of all real roots of the equation


Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right|$. Then $S$ :

  1. (1) contains exactly two elements.

  2. (2) is a singleton.

  3. (3) is an empty set.

  4. (4) contains at least four elements.

Correct Option: , 2


Let $3^{x}=y$

$\therefore \quad y(y-1)+2=|y-1|+|y-2|$

Case 1: when $y>2$


$y^{2}-3 y+5=0$

$\because \quad D<0[\therefore$ Equation not satisfy. $]$

Case 2: when $1 \leq y \leq 2$



$\because \quad D<0[\therefore$ Equation not satisfy.]

Case 3: when $y \leq 1$



$\therefore y=\frac{-1+\sqrt{5}}{2}$

$=\frac{-1-\sqrt{5}}{2}$ $[\therefore$ Equation not Satisfy $]$

$\therefore$ Only one $-1+\frac{\sqrt{5}}{2}$ satisfy equation

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now