Let the line L be the projection of the line


Let the line $\mathrm{L}$ be the projection of the line


in the plane $x-2 y-z=3$. If $d$ is the distance of the point $(0,0,6)$ from $\mathrm{L}$, then $\mathrm{d}^{2}$ is equal to__________


$L_{1}: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-4}{2}$

for foot of $\perp \mathrm{r}$ of $(1,3,4)$ on $\mathrm{x}-2 \mathrm{y}-\mathrm{z}-3=0$

$(1+t)-2(3-2 t)-(4-t)-3=0$

$\Rightarrow \mathrm{t}=2$

So foot of $\perp r \triangleq(3,-1,2)$

& point of intersection of $L_{1}$ with plane

is $(-11,-3,-8)$

dr's of $L$ is $<14,2,10>$

$\cong\langle 7,1,5\rangle$

$\Rightarrow d^{2}=\frac{1^{2}+(43)^{2}+(10)^{2}}{49+1+25}=26$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now