Let the observations


Let the observations $x_{i}(1 \leq i \leq 10)$ satisfy the equations,

$\sum_{i=1}^{10}\left(x_{i}-5\right)=10$ and $\sum_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$. If $\mu$ and $\lambda$ are the

mean and the variance of the observations, $x_{1}-3, x_{2}-3, \ldots$

$x_{10}-3$, then the ordered pair $(\mu, \lambda)$ is equal to:

  1. (1) $(3,3)$

  2. (2) $(6,3)$

  3. (3) $(6,6)$

  4. (4) $(3,6)$

Correct Option: 1


Mean of the observation $\left(x_{i}-5\right)=\frac{\Sigma\left(x_{i}-5\right)}{10}=1$

$\therefore \quad \lambda=\left\{\right.$ Mean $\left.\left(x_{i}-5\right)\right\}+2=3$

Variance of the observation


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now