Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Let the population of rabbits surviving at

Question:

Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{\mathrm{dp}(\mathrm{t})}{\mathrm{dt}}=\frac{1}{2} \mathrm{p}(\mathrm{t})-200$. If $\mathrm{p}(0)=100$, then $\mathrm{p}(\mathrm{t})$ equals :

  1. $400-300 \mathrm{e}^{\mathrm{t} / 2}$

  2. $300-200 \mathrm{e}^{-1 / 2}$

  3. $600-500 \mathrm{e}^{\mathrm{t} / 2}$

  4. $400-300 \mathrm{e}^{-1 / 2}$


Correct Option: 1

Solution:

Leave a comment

None
Free Study Material