Mark (√) against the correct answer in the following:
If $f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$ then $\{h \circ(g \circ f)\}\left(\sqrt{\frac{\pi}{4}}\right)=?$
A. 0
B. 1
C. $\frac{1}{\mathrm{x}}$
D. $\frac{1}{2} \log \frac{\pi}{4}$
$f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$
$\Rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x}))=\tan (\mathrm{f}(\mathrm{x}))=\tan \left(\mathrm{x}^{2}\right)$
$\Rightarrow \mathrm{h}(\mathrm{g}(\mathrm{f}(\mathrm{x})))=\log (\mathrm{g}(\mathrm{f}(\mathrm{x})))=\log \left(\tan \left(\mathrm{x}^{2}\right)\right)$
$\Rightarrow \mathrm{h}\left(\mathrm{g}\left(\mathrm{f}\left(\sqrt{\frac{\pi}{4}}\right)\right)\right)=\log \left(\tan \left(\sqrt{\frac{\pi^{2}}{4}}\right)\right)=\log \left(\tan \left(\frac{\pi}{4}\right)\right)=\log (1)=0$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.