Match the following columns:
(a) .......
(b) ........
(c) ........
(d) ........
(a) Because it is a non-terminating and repeating decimal, it is a rational number.
(b) $\pi$ is an irrational number.
(c) $\frac{1}{7}=.142857142857 \ldots$
Hence, its period is 6.
(d)
$x^{2}+\frac{1}{x^{2}}$
$=(2-\sqrt{3})^{2}+\frac{1}{(2-\sqrt{3})^{2}}$
$=\left(2^{2}+(\sqrt{3})^{3}-2 \times 2 \times \sqrt{3}\right)+\frac{1}{\left(2^{2}+(\sqrt{3})^{3}-2 \times 2 \times \sqrt{3}\right)}$
$=(4+3-4 \times \sqrt{3})+\frac{1}{(4+3-4 \times \sqrt{3})}$
$=(7-4 \times \sqrt{3})+\frac{1}{(7-4 \times \sqrt{3})}$
$=\frac{(7-4 \times \sqrt{3})^{2}}{(7-4 \times \sqrt{3})}+\frac{1}{(7-4 \times \sqrt{3})}$
$=\frac{7^{2}+(4 \sqrt{3})^{2}-2 \times 7 \times 4 \sqrt{3}+1}{(7-4 \times \sqrt{3})}$
$=\frac{49+48-56 \sqrt{3}+1}{(7-4 \times \sqrt{3})}$
$=\frac{98-56 \sqrt{3}}{(7-4 \times \sqrt{3})}$
$=14 \times \frac{((7-4 \times \sqrt{3}))}{(7-4 \times \sqrt{3})}$
$=14$