Niobium crystallises in body-centred cubic structure. If density is 8.55 g cm−3, calculate atomic radius of niobium using its atomic mass 93 u.
It is given that the density of niobium, d = 8.55 g cm−3
Atomic mass, M = 93 gmol−1
As the lattice is bcc type, the number of atoms per unit cell, z = 2
We also know that, NA = 6.022 × 1023 mol−1
Applying the relation:
$d=\frac{z \mathrm{M}}{a^{3} \mathrm{~N}_{\mathrm{A}}}$
$\Rightarrow a^{3}=\frac{z \mathrm{M}}{d \mathrm{~N}_{\mathrm{A}}}$
$=\frac{2 \times 93 \mathrm{gmol}^{-1}}{8.55 \mathrm{gcm}^{-3} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}}$
= 3.612 × 10−23 cm3
So, a = 3.306 × 10−8 cm
For body-centred cubic unit cell:
$r=\frac{\sqrt{3}}{4} a$
$=\frac{\sqrt{3}}{4} \times 3.306 \times 10^{-8} \mathrm{~cm}$
= 1.432 × 10−8 cm
= 14.32 × 10−9 cm
= 14.32 nm