Prove that


Let $f: R \rightarrow R: f(x)=\left(3-x^{3}\right)^{1 / 3}$. Find $f$ o $f$.



To find: $f$ of

Formula used: (i) $f$ o $f=f(f(x))$

Given: (i) $f: R \rightarrow R: f(x)=\left(3-x^{3}\right)^{1 / 3}$

We have,

$f \circ f=f(f(x))=f\left(\left(3-x^{3}\right)^{1 / 3}\right)$

$f \circ f=\left[3-\left\{\left(3-x^{3}\right)^{1 / 3}\right\}^{3}\right]^{1 / 3}$

$=\left[3-\left(3-x^{3}\right)\right]^{1 / 3}$

$=\left[3-3+x^{3}\right]^{1 / 3}$

$=\left[x^{3}\right]^{1 / 3}$


Ans) $f$ o $f(x)=x$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now