Prove that

Question:

$48 x^{2}-13 x-1=0$

 

Solution:

Given:

$48 x^{2}-13 x-1=0$

$\Rightarrow 48 x^{2}-(16 x-3 x)-1=0$

$\Rightarrow 48 x^{2}-16 x+3 x-1=0$

$\Rightarrow 16 x(3 x-1)+1(3 x-1)=0$

$\Rightarrow(16 x+1)(3 x-1)=0$

$\Rightarrow 16 x+1=0$ or $3 x-1=0$

$\Rightarrow x=\frac{-1}{16}$ or $x=\frac{1}{3}$

Hence, the roots of the equation are $\frac{-1}{16}$ and $\frac{1}{3}$.

Leave a comment