Question:
Prove that the function $f: R \rightarrow R: f(x)=2 x$ is one-one and onto.
Solution:
To prove: function is one-one and onto
Given: $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=2 \mathrm{x}$
We have,
$f(x)=2 x$
For, $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 2 x_{1}=2 x_{2}$
$\Rightarrow x_{1}=x_{2}$
When, $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$
∴ f(x) is one-one
$f(x)=2 x$
Let $f(x)=y$ such that $y \in R$
$\Rightarrow y=2 x$
$\Rightarrow x=\frac{y}{2}$
Since $y \in R$,
$\Rightarrow \frac{y}{2} \in R$
⇒ x will also be a real number, which means that every value of y is associated with some x
$\therefore f(x)$ is onto
Hence Proved