Question:
Prove that the points $A(2,4), B(2,6)$ and $C(2+\sqrt{3}, 5)$ are the vertices of an equilateral triangle.
Solution:
The given points are $A(2,4), B(2,6)$ and $C(2+\sqrt{3}, 5)$. Now
$A B=\sqrt{(2-2)^{2}+(4-6)^{2}}=\sqrt{(0)^{2}+(-2)^{2}}$
$=\sqrt{0+4}=2$
$B C=\sqrt{(2-2-\sqrt{3})^{2}+(6-5)^{2}}=\sqrt{(-\sqrt{3})^{2}+(1)^{2}}$
$=\sqrt{3+1}=2$
$A C=\sqrt{(2-2-\sqrt{3})^{2}+(4-5)^{2}}=\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}$
$=\sqrt{3+1}=2$
Hence, the points $A(2,4), B(2,6)$ and $C(2+\sqrt{3}, 5)$ are the vertices of an equilateral triangle.