Question:
Prove that the points $A(a, 0), B(0, b)$ and $C(1,1)$ are collinear ii $\left(\frac{1}{a}+\frac{1}{b}\right)=1$.
Solution:
Consider the points A(a, 0), B(0, b) and C(1, 1).
Here, (x1 = a, y1 = 0), (x2 = 0, y2 = b) and (x3 = 1, y3 = 1).
It is given that the points are collinear. So,
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$\Rightarrow a(b-1)+0(1-0)+1(0-b)=0$
$\Rightarrow a b-a-b=o$
Divid ing the equation by $a b$ :
$\Rightarrow 1-\frac{1}{b}-\frac{1}{a}=0$
$\Rightarrow 1-\left(\frac{1}{a}+\frac{1}{b}\right)=0$
$\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)=1$
Therefore, the given points are collinear if $\left(\frac{1}{a}+\frac{1}{b}\right)=1$.