Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
Here we have to prove that the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
We have two triangles
and
in which ![]()

In the given figure AD is perpendicular to BC and PM is perpendicular to QR
The areas of triangle ABC and triangle PQR are given by
Area $(\triangle \mathrm{ABC})=\frac{1}{2} \times$ base $\times$ hight
$=\frac{1}{2} \mathrm{BC} \cdot \mathrm{AD}$
Area $(\Delta \mathrm{PQR})=\frac{1}{2} \times$ base $\times$ hight
$=\frac{1}{2} \mathrm{QR} . \mathrm{PM}$
$\frac{\text { Area }(\mathrm{ABC})}{\text { Area }(\mathrm{PQR})}=\frac{\frac{1}{2} \mathrm{BC} . \mathrm{AD}}{\frac{1}{2} \mathrm{QR} . \mathrm{PM}}$
$\frac{\text { Area }(\mathrm{ABC})}{\text { Area }(\mathrm{PQR})}=\frac{\frac{1}{2} \mathrm{BC} . \mathrm{AD}}{\frac{1}{2} \mathrm{QR} . \mathrm{PM}}$
$=\left(\frac{\mathrm{AD}}{\mathrm{PM}}\right)\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right) \ldots \ldots$(1)
Since
are same, therefore
$\sin \mathrm{B}=\frac{\mathrm{AD}}{\mathrm{AB}}$
$\sin Q=\frac{P M}{P Q}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{PM}}{\mathrm{PQ}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{PM}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$(2)
By applying the property of similar triangles, we have
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$......(3)
From (2) and (3), we get
$\frac{\mathrm{AD}}{\mathrm{PM}}=\frac{\mathrm{BC}}{\mathrm{QR}}$...(4)
From (1) and (4), we have
$\frac{\text { Area }(\mathrm{ABC})}{\text { Area }(\mathrm{PQR})}=\left(\frac{\mathrm{AD}}{\mathrm{PM}}\right)\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)$
$=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)$
$=\left(\frac{B C}{Q R}\right)^{2}$
$=\frac{B C^{2}}{Q R^{2}}$
Hence $\frac{\text { Area }(\mathrm{ABC})}{\text { Area }(\mathrm{PQR})}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}$