Prove that the relation R on Z defined by
$(a, b) \in R \Leftrightarrow a-b$ is divisible by 5
is an equivalence relation on Z.
We observe the following properties of relation R.
Reflexivity:
Let $a$ be an arbitrary element of $R$. Then,
$\Rightarrow a-a=0=0 \times 5$
$\Rightarrow a-a$ is divisible by 5
$\Rightarrow(a, a) \in R$ for all $a \in Z$
So, $R$ is reflexive on $Z$.
Symmetry:
Let $(a, b) \in R$
$\Rightarrow a-b$ is divisible by 5
$\Rightarrow a-b=5 p$ for some $p \in Z$
$\Rightarrow b-a=5(-p)$
Here, $-p \in Z$ [Since $p \in Z]$
$\Rightarrow b-a$ is divisible by 5
$\Rightarrow(b, a) \in R$ for all $a, b \in Z$
So, $R$ is symmetric on $Z$.
Transitivity:
Let $(a, b)$ and $(b, c) \in R$
$\Rightarrow a-b$ is divisible by 5
$\Rightarrow a-b=5 p$ for some $Z$
Also, $b-c$ is divisible by 5
$\Rightarrow b-c=5 q$ for some $Z$
Adding the above two, we get
$a-b+b-c=5 p+5 q$
$\Rightarrow a-c=5(p+q)$
$\Rightarrow a-c$ is divisible by 5
Here, $p+q \in Z$
$\Rightarrow(a, c) \in R$ for all $a, c \in Z$
So, $R$ is transitive on $Z$.
Hence, R is an equivalence relation on Z.